SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WAKA:ref ;pers:(Inganäs Olle);pers:(Hou Lintao)"

Sökning: WAKA:ref > Inganäs Olle > Hou Lintao

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fan, Qunping, 1989, et al. (författare)
  • Over 14% efficiency all-polymer solar cells enabled by a low bandgap polymer acceptor with low energy loss and efficient charge separation
  • 2020
  • Ingår i: Energy & Environmental Science. - : Royal Society of Chemistry. - 1754-5692 .- 1754-5706. ; 13:12, s. 5017-5027
  • Tidskriftsartikel (refereegranskat)abstract
    • Obtaining both high open-circuit voltage (V-oc) and short-circuit current density (J(sc)) has been a major challenge for efficient all-polymer solar cells (all-PSCs). Herein, we developed a polymer acceptor PF5-Y5 with excellent optical absorption capability (onset extending to similar to 880 nm and maximum absorption coefficient exceeding 105 cm(-1) in a film), high electron mobility (3.18 x 10(3) cm(2) V-1 s(-1)) and high LUMO level (-3.84 eV) to address such a challenge. As a result, the PBDB-T:PF5-Y5-based all-PSCs achieved a high power conversion efficiency of up to 14.45% with both a high Voc (0.946 V) and a high Jsc (20.65 mA cm(-2)), due to the high and broad absorption coverage, small energy loss (0.57 eV) and efficient charge separation and transport in the device, which are among the best values in the all-PSC field. In addition, the all-PSC shows a similar to 15% improvement in PCE compared to its counterpart small molecule acceptor (Y5)-based device. Our results suggest that PF5-Y5 is a very promising polymer acceptor candidate for applications in efficient all-PSCs.
  •  
2.
  • Hou, Lintao, et al. (författare)
  • Lateral Phase Separation Gradients in Spin-Coated Thin Films of High-Performance Polymer: Fullerene Photovoltaic Blends
  • 2011
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-3028 .- 1616-301X. ; 21:16, s. 3169-3175
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, it is demonstrated that a finer nanostructure produced under a rapid rate of solvent removal significantly improves charge separation in a high-performance polymer: fullerene bulk-heterojunction blend. During spin-coating, variations in solvent evaporation rate give rise to lateral phase separation gradients with the degree of coarseness decreasing away from the center of rotation. As a result, across spin-coated thin films the photocurrent at the first interference maximum varies as much as 25%, which is much larger than any optical effect. This is investigated by combining information on the surface morphology of the active layer imaged by atomic force microscopy, the 3D nanostructure imaged by electron tomography, film formation during the spin coating process imaged by optical interference and photocurrent generation distribution in devices imaged by a scanning light pulse technique. The observation that the nanostructure of organic photovoltaic blends can strongly vary across spin-coated thin films will aid the design of solvent mixtures suitable for high molecular-weight polymers and of coating techniques amenable to large area processing.
  •  
3.
  • Tao, Qiang, 1987, et al. (författare)
  • D-A(1)-D-A(2) Copolymers with Extended Donor Segments for Efficient Polymer Solar Cells
  • 2015
  • Ingår i: Macromolecules. - : American Chemical Society (ACS). - 1520-5835 .- 0024-9297. ; 48:4, s. 1009-1016
  • Tidskriftsartikel (refereegranskat)abstract
    • Typically a donor-acceptor (D-A) design strategy is used for engineering the bandgap of polymers for solar cells. However, in this work, a series of alternating D-A(1-)D-A(2) copolymers PnTQTI(F) were synthesized and characterized with oligothiophenes (nT, n = 1, 2, 3) as the donor and two electron-deficient moieties, quinoxaline and isoindigo, as the acceptors in the repeating unit. We have studied the influence of the donor segments with different numbers of thiophene units and the effect of the addition of fluorine to the quinoxaline unit of the D-A(1)-D-A(2) polymers. The photophysical, electrochemical, and photovoltaic properties of the polymers were examined via a range of techniques and related to theoretical simulations. On increasing the length of the donor thiophene units, broader absorption spectra were observed in addition to a sequential increase in HOMO levels, while the LUMO levels displayed very small variations. The addition of fluorine to the quinoxaline unit not only decreased the HOMO levels of the resulting polymers but also enhanced the absorption coefficients. A superior photovoltaic performance was observed for the P3TQTI-F-based device with a power conversion efficiency (PCE) of 7.0%, which is the highest efficiency for alternating D-A(1)-D-A(2) polymers reported to date. The structureproperty correlations of the PnTQTI(F) polymers demonstrate that varying of the length of the donor segments is a valuable method for designing high-performance D-A(1)-D-A(2) copolymers and highlight the promising nature of D-A(1)-D-A(2) copolymers for efficient bulk-heterojunction solar cells.
  •  
4.
  • Wang, Ergang, 1981, et al. (författare)
  • An Easily Synthesized Blue Polymer for High-Performance Polymer Solar Cells
  • 2010
  • Ingår i: ADVANCED MATERIALS. - : John Wiley and Sons, Ltd. - 0935-9648 .- 1521-4095. ; 22:46, s. 5240-5244
  • Tidskriftsartikel (refereegranskat)abstract
    • High performance solar cells fabricated from an easily synthesized donor-acceptor polymer show maximum power point up to 6.0 mW cm(-2), with an open-circuit voltage of 0.89 V, short-circuit current density of 10.5 mA cm(-2) and fill factor of 0.64, making this polymer a particularly promising candidate for high-efficiency low-cost polymer solar cells.
  •  
5.
  • Wang, Ergang, 1981, et al. (författare)
  • Conformational Disorder Enhances Solubility and Photovoltaic Performance of a Thiophene–Quinoxaline Copolymer
  • 2013
  • Ingår i: Advanced Energy Materials. - : Wiley. - 1614-6840 .- 1614-6832. ; 3:6, s. 806-814
  • Tidskriftsartikel (refereegranskat)abstract
    • The side-chain architecture of alternating copolymers based on thiophene and quinoxaline (TQ) is found to strongly influence the solubility and photovoltaic performance. In particular, TQ polymers with different linear or branched alkyloxy-phenyl side chains on the quinoxaline unit are compared. Attaching the linear alkyloxy side-chain segment at the meta- instead of the para-position of the phenyl ring reduces the planarity of the backbone as well as the ability to order. However, the delocalisation across the backbone is not affected, which permits the design of high-performance TQ polymers that do not aggregate in solution. The use of branched meta-(2-ethylhexyl)oxy-phenyl side-chains results in a TQ polymer with an intermediate degree of order. The reduced tendency for aggregation of TQ polymers with linear meta-alkyloxy-phenyl persists in the solid state. As a result, it is possible to avoid the decrease in charge-transfer state energy that is observed for bulk-heterojunction blends of more ordered TQ polymers and fullerenes. The associated gain in open-circuit voltage of disordered TQ:fullerene solar cells, accompanied by a higher short-circuit current density, leads to a higher power conversion efficiency overall. Thus, in contrast to other donor polymers, for TQ polymers there is no need to compromise between solubility and photovoltaic performance.
  •  
6.
  • Wang, Ergang, 1981, et al. (författare)
  • Side-Chain Architectures of 2,7-Carbazole and Quinoxaline-Based Polymers for Efficient Polymer Solar Cells
  • 2011
  • Ingår i: Macromolecules. - : American Chemical Society (ACS). - 1520-5835 .- 0024-9297. ; 44:7, s. 2067-2073
  • Tidskriftsartikel (refereegranskat)abstract
    • Three polymers bearing a common carbazole thiophene quinoxaline thiophene backbone, but different side chains, were designed and synthesized in order to investigate the effect of side chains on their photovoltaic performance. Their photophysical, electrochemical, and photovoltaic properties were investigated and compared. The polymer EWC3, with the largest amount of side chains, showed the highest power conversion efficiency of 3.7% with an open-circuit voltage (V-oc) of 0.92 V. The atomic force microscopy images of the active layers of the devices showed that the morphology was highly influenced by the choice of the solvent and processing additive. It is worth noting that polymer solar cells (PSCs) fabricated from EWC3, with branched side chains on the carbazole units, gave a much higher V-oc than the devices made from EWC1, which bears the same electron-deficient segment as EWC3 but straight side chains on carbazole units. This study offered a useful and important guideline for designing 2,7-carbazole-based polymers for high-performance PSCs.
  •  
7.
  • Wang, Ergang, 1981, et al. (författare)
  • Small Band Gap Polymers Synthesized via a Modified Nitration of 4,7-Dibromo-2,1,3-benzothiadiazole
  • 2010
  • Ingår i: Organic Letters. - : American Chemical Society (ACS). - 1523-7052 .- 1523-7060. ; 12:20, s. 4470-4473
  • Tidskriftsartikel (refereegranskat)abstract
    • The nitration of 4,7-dibromo-2,1,3-benzothiadiazole was modified by using CF3SO3H and HNO3 as the nitrating agent, and the related yield was improved greatly. On the basis of this improvement, two new small band gap polymers, P1TPQ and P3TPQ, were developed. Bulk heterojunction solar cells based on P3TPO and [6,6]-phenyl-C-71-butyric acid methyl ester exhibit interesting results with a power conversion efficiency of 21% and photoresponse up to 1.1 mu m
  •  
8.
  • Wang, Zhongqiang, et al. (författare)
  • Mixed solvents for reproducible photovoltaic bulk heterojunctions
  • 2011
  • Ingår i: Journal of Photonics for Energy. - : SPIE-Intl Soc Optical Eng. - 1947-7988. ; 1:1 (Special Section on Organic Photovoltaics), s. 011122-
  • Tidskriftsartikel (refereegranskat)abstract
    • Most efficient polymer solar cells are usually fabricated from toxic organic solvents, such as chloroform, chlorobenzene, or dichlorobenzene (ODCB). Here, we demonstrate a power conversion efficiency of 4.5% in solar cells with a new blue polymer poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (TQ1) mixed with PC71BM and processed from mixed solvents of toluene and ODCB in a ratio of 9:1. Decreasing the content of ODCB makes device processing more compatible with the environment for large scale production, with 10% reduction of photocurrent compared to devices from pure ODCB under optimized conditions. In addition, less variation of photocurrent is obtained in solar cells processed from mixed solvents than from pure ODCB due to varying nanostructure in the blends, which is also critical for production.
  •  
9.
  • Xia, Yuxin, et al. (författare)
  • Inverted all-polymer solar cells based on a quinoxaline-thiophene/naphthalene-diimide polymer blend improved by annealing
  • 2016
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 4:10, s. 3835-3843
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated the effect of thermal annealing on the photovoltaic parameters of all-polymer solar cells based on a quinoxaline-thiophene donor polymer (TQ1) and a naphthalene diimide acceptor polymer (N2200). The annealed devices show a doubled power conversion efficiency compared to nonannealed devices, due to the higher short-circuit current (J(sc)) and fill factor (FF), but with a lower open circuit voltage (V-oc). On the basis of the morphology-mobility examination by several scanning force microscopy techniques, and by grazing-incidence wide-angle X-ray scattering, we conclude that better charge transport is achieved by higher order and better interconnected networks of the bulk heterojunction in the annealed active layers. The annealing improves charge transport and extends the conjugation length of the polymers, which do help in charge generation and meanwhile reduce recombination. Photoluminescence, electroluminescence, and light intensity dependence measurements reveal how this morphological change affects charge generation and recombination. As a result, the J(sc) and FF are significantly improved. However, the smaller band gap and the higher HOMO level of TQ1 upon annealing causes a lower V-oc. The blend of an amorphous polymer TQ1, and a semi-crystalline polymer N2200, can thus be modified by thermal annealing to double the power conversion efficiency.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy